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Introduction

While it is true that cobalt molybdenum catalysts were developed primarily
for the hydrodesulfurization of petroleum residium streams, they have been applied
extensively in laboratory and pilot plant investigations of the production of
quality synthetic fuels from coal, oil shale and tar sands. In these applications
the catalyst has been of interest not just because of its desulfurization capa-
bilities, but also because of its high activity in hydrogenation, stabilization
and conversion reactions. The remarkable feature -of cobalt molybdenum catalysts
is their ability to remain active despite the presence of notorious catalyst
poisons, in particular organic sulfur and nitrogen compounds, in the feedstocks
undergoing treatment.

Phenanthrene is typical of the hydrocarbons produced during the liquefaction
of coal. The staggered phenanthrene-like compounds are thermodynamically more
stable (6) than the linear anthracene-like isomers and they are usually present
in greater abundance in coal derived liquids (e.g. 1). Partially hydrogenated
derivatives of phenanthrene are very active hydrogen donors in coal extraction.
In one study 8, 10-dihydrophenanthrene was reported to be slightly superior to
tetralin in hydrogen donor activity (2). Perhydrophenanthrene was much less
active, and the possibility of over hydrogenating the solvent in a hydrogen
donor coal liquefaction scheme is widely recognized. The extent to which
phenanthrene is hydrogenated in a catalytic solvent hydrogenation reactor is
therefore of considerable interest.

In addition some conversion to lower molecular weight species (hydrocracking)
is usually desirable. While cobalt molybdenum is much less active in this regard
as compared with catalysts containing an acidic component, it has proven superior
in terms of hydrocracking selectivity in at least one instance. Gardner and
Hutchinson found cobalt molybdenum to be active and selective for hydrocracking
polyphenyls including biphenyl (4). Catalysts on acidic supports were less
selective and produced mostly coke. Penninger and Slotboom observed substantial
quantities of 2-ethylbiphenyl and biphenyl in the reaction products from the
thermal high pressure hydrogenolysis of phenanthrene indicating that hydrogenation
and a-ring-opening at the 9, 10-position was in fact taking place (7). The pro-
duct distribution from cracking over nonacidic or low acidity catalysts frequently
resembles that obtained in thermal cracking processes. Since cobalt molybdenum
catalysts are known to be selective in the hydrocracking of biphenyl, and it might
be speculated that biphenyls can be formed from phenanthrene over cobalt molyb-
denum in a manner similar to that observed in thermal cracking, it was hoped
that some cracking at the central ring of phenanthrene might be accomplished.

This speculation was a major driving force behind the present investigation. The
economic advantages of hydrocracking at the inner rings of condensed ring aromatics
as compared with terminal ring cleavage are readily apparent in terms of reduced
hydrogen consumption, higher yields and in some cases higher quality products.

It was evident from the very beginning of this investigation that much

highgr temperatures than normally encountered in packed bed reactors would be
required in order to obtain substantial yields of cracked products. Catalyst
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deactivation due to carbon formation on the catalyst surface would likely be a
problem. However, liquid fluidized beds have been employed on a commercial

scale in the hydrodesulfurization of petroleum residium streams (H-0il) and on

the pilot plant scale in the liquefaction of coal (H-Coal). One of the advantages
of the liquid fluidized bed reactor is that provisions can be made for the con-
tinuous addition and withdrawal of catalyst. The addition of fresh catalyst could
conceivably overcome the deactivation problem when operating at high severity.

Experimental

The catalyst employed in this investigation was supplied by the Nalco Chemical
Company and carries the designation Nalcomo-471. According to the manufacturer's
specifications the catalysts consists of 12.5% Mo0, and 3.5% Cog supported on an
alumina base. The surface area and total pore volume are 295 m"/gm and 0.55
cc/gm respectively. High purity hydrogen (99.995% according to the supplier's
specifications) was obtained from the Matheson Gas Products Company in 3500 psig
cylinders. Phenanthrene, 98+% purity, melting point 99-101°C was purchased from
the Aldrich Chemical Company. An elemental analysis of the phenanthrene (Galbraith
Laboratories, Knoxville, TN) indicated that the sample consisted of Carbon: 93.69%,
Hydrogen: 5.48%, Nitrogen: 0,01%, Sulfur: 0.42%, and Oxygen: 0.39% by weight.

The reactor, Figure 1, is a steady flow type constructed of a 1/2 inch heavy
wall (0.083 inch) Type 316 stainless steel tube and heated by a Marshall tubular
furnace, model 1016. The reactor charges approximately five grams of catalyst.
Thermocouples were inserted about 1/2 inch into both ends of the catalyst bed,
and a preheat zone of glass chips was provided at the bed inlet. Liquid phenan-
threne was metered into the reactor by a precision Ruska proportioning pump,
model 2252-BI, with a heated barrel. Various discharge rates from 2 ce/hr to
240 cc/hr could be obtained by selecting the proper choice of gear ratios. The
hydrogen flowrate was monitored by a flow meter constructed of a 29 inch length
of 0.009 inch I.D. capillary tubing and a Barton model 200 differential pressure
cell. The capillary pressure and reactor pressure were controlled respectively
by a Tescom pressure regulator, model 26-1023-002 and a Tescom back pressure
regulator model 26-1723-24. Flow rates were controlled with a Hoke Milli-Mite
needle valve. Liquid products were collected in two high pressure accumulators
constructed of one inch schedule 80 stainless steel pipe and Swagelok buttweld
connectors. Product gases were vented through a low pressure accumulator in dry
ice-propanol, through a wet test meter, and collected in a polyethylene gas bag.

The catalyst was crushed and sieved to 20/30 mesh and calcined at 1000°F
in air for four hours. After calcining the catalyst was charged to the reactor
and the system pressure tested with hydrogen. Presulfiding was carried out at
250 psig using a hydrogen sulfide (2%) - hydrogen (98%) mixture. During pre-
sulfiding the gas flow was set at 5 l/hr/gm catalyst and the reactor temperature
was maintained at 400°F for 5 hours. After this period the temperature was
raised at a rate of 2°F/min to 600°F and held for 1 hour. Then with sulfiding
gas flowing at a minimal rate the reactor was cooled to room temperature.

The phenanthrene feed was spiked with elemental sulfur to a total sulfur
content of 1.0% by weight. During startup the spiked feed was cut in with the
hydrogen sulfide-hydrogen mixture flowing at 1000 psig and 500°F. Once liquid pro-
duct was detected in the high pressure accumulator the gas mixture was replaced
with pure hydrogen and the reactor was brought to operating conditions. After
a period of time sufficient for three displacements of the reactor volume the
reaction products were directed to a second high pressure accumulator and a yield
period begun. At the termination of a yield pericd the 1liquid product was col-
lected and stored in a freezer, and the gas product was immediately analyzed.
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The system was brought to a new set of run conditions and the procedure repeated.
During all adjustments care was taken to assure that the rate of temperature rise
never exceeded 120°F/hr and that the catalyst was at all times in contact with
sulfur.

The products were analyzed on a gas chromatograph which utilized a hydrogen
flame ionization detector and possessed temperature programming capabilities.
The column for the liquid product analysis was packed with 5% SE-30 on 60/80 mesh
Chromosorb P, AW. The gas analysis column was packed with Chromosorb 102. The
identification of the various product peaks was accomplished by measuring the
retention time of pure compounds and by a GC-mass spectral analysis. The former
method was used to identify most of the lower molecular weight hydrocarbons and
the latter method was relied upon for identification of many of the high molecular
weight peaks. The mass spectra of some of the more important product peaks are
presented in Figure 2. Additional information on the analytical methods used
in this investigation is available in masters theses by Huang (5) and Early (3)

Results

A total of eighteen yield periods were successfully completed in two series
of experiments. The operating conditions and product yields are presented in
Tables 1 and 2, respectively. These yields have been adjusted to meet a 100%
carbon material balance. Before discussing these results it must be pointed out
that problems were encountered in two areas.

Because of the large heat effect it was not possible in some instances to
operate the reactor isothermally. In the most extreme case the temperature
difference between top and bottom of the reactor was of the order of 90°F. Thus
the reported temperatures at the milder operating conditions must be considered
nominal values only. (The reported temperature is the numerical average of the
reactor top and bottom temperatures.) In nonadiabatic-nonisothermal reactors
it is not uncommon that the temperature at some point within the reactor will
exceed either the top or bottom temperature. Such a phenomenon would go undetected
in our experimental set-up since thermocouples were only located at the bed inlet
and exit. The actual upper and lower temperatures are presented in Table 1.

The second problem was encountered in the analytical portion of the investi-
gation. Three peaks on the chromatogram were found to be mixtures of two com-
ponents. The unresolved pairs were: 1. asym-0ctahydrophenanthrene isomer ang
n-Butylnaphthalene, 2. Perhydrophenanthrene isomer and n-Butyltetralin and 3.
Octahydrophenanthrene isomer and Dihydrophenanthrene. The unresolved 'component"
yield known to consist of asym-Octahydrophenanthrene and n-Butyltetralin is
plotted as a function of temperature (pressure, space velocity constant) in
Figure 3. The curve exhibits two maxima. Thermodynamics considerations suggest
that the high temperature maximum is due principally to n-Butylnaphthalene;
whereas, the low temperature maximum is due principally to Octahydrophenanthrene.
The mass spectra of this unresolved peak from products of the 750°F run and the
800°F run are consistent with this contention. The dotted line in Figure 10 is
an estimate of the magnitude of each individual contribution to the unresolved
peak drawn in such a manner that the sum of the individual component estimates
is equal to the total. Similar estimates were made for the other unresolved
pairs (5). Separation of the unresolved components in this manner is admittedly
speculative and qualitative. Nevertheless this procedure does provide a simpli-
fication which is consistent with the observed data and aids greatly in the quali-
tative interpretation of the data.

Since rapid deactivation of the catalyst was expected, especially at the more
severe operating conditions, it was necessary to maintain a record of declining
catalyst activity. This was done by repeating the selected base conditions, of
850°F, 2000 psi, and 2.0 gm/hr/gm in the first set of experiments and 600°F,
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2000 psi, 2.0 gm/hr/gm in the second. While no significant deactivation was
observed in the second set of experiments (WH-09), Figure 4 shows that both

the conversion of phenanthrene and the conversion to C. . decreased with respect
to grams of oil on catalyst in the first set of experiménts (WH-08). As
expected, the sharpest decline in catalyst activity was observed when the more
severe operating conditions (1000°F, 1500-2500 psi) were examined.

Yields of the various hydrogenation products of phenanthrene are presented
in Table 2 and Figure 5. Large quantities of octahydrophenanthrene and perhydro-
phenanthrene isomers were observed in many of the products. (The various isomers
are lumped together in the figures). At 2000 psig and a space velocity of 2 gm/hr/gm,
octahydrophenanthrenes are produced in 82% yield at 600°F. With increasing
temperatures the octahydrophenanthrenes are further hydrogenated to perhydrophenan-
threnes until a maximum yield of approximately 62% perhydrophenanthrenes is reached
at 750°F. Beyond this temperature the yield of perhydrophenanthrenes decreases
as the thermodynamic equilibrium is shifted to favor the less saturated species.
Cracking reactions are also a factor at the elevated temperatures as illustrated
in Figures 6, 7, and 8. The presence of n-butyldecalin and decalin in the products
indicates that some cracking of perhydrophenanthrene is taking place. However
it appears that at the temperatures required to hydrocrack perhydrophenanthrene
(at 2 gm/hr/gm and 2000 psig) the equilibrium is shifted away from perhydrophenan-
threne formation. No evidence of large branched paraffins that might be an-
ticipated from mechanisms involving ring opening of perhydrophenanthrene were
uncovered in the mass spectral analyses. Large quantities of tetralins and
naphthalenes were observed in the cracked products. The presence of large
quantities of n-butane and n-butyl substituted tetralin, naphthalene and decalin
indicates that the major reaction paths involve saturation and cleavage of terminal
rings. In Figure 9 various grouped product yields at 950°F and 2000 psig are
plotted versus space time. Again it is evident that the formation of two ring
compounds precedes the formation of one ring compounds.

The only evidence of cracking at the central ring was the presence of trace
quantities (less than 1 mole % yield) of biphenyl and cyclohexylbenzene in some
of the reaction products. Slightly higher yields of 2-ethylbiphenyl were ob-
tained. The maximum occurred at about 900°F (WH-08-02) and corresponded to the
maximum in dihydrophenanthrene yield. It should be pointed out that these data
do not entirely dispel the possibility of cracking at the central ring. It
would be interesting to conduct some experimentation in the same temperature
range but at much lower pressures than employed in the present investigation where
the equilibrium yields of dihydrophenanthrene would be higher. Of course catalyst
deactivation would likely be even more serious a problem than encountered in
the present study.

Because of the near isothermal behavior of the high temperature
runs it is possible to perform a crude analysis of the reaction kinetics. A
simple model which appears to describe our system is:

1 k
>

where A represents phenanthrene, B represents hydrogenated product and C represents
cracked products (C,.). If it is assumed that the equilibrium reaction is rapid

in comparison with %Re cracking reaction, then one can show that the overall
conversion of phenanthrene to cracked products should follow first order kineties (5).
But before a meaningful analysis of the data can be undertaken it is necessary

that the rate constants be corrected for the observed decline in catalyst activity.



This was done by defining the activity as the ratio of the observed first order
rate constant to the first order rate constant obtained by extrapolating the
deactivation plot, Figure 4, to zero grams of o0il on catalyst. The activity
was then calculated for each yield period using the deactivation curve of Figure
4. A plot of In{1-x) versus a (activity) x t(space velocity), Figure 10, con-
firms that the hydrocracking reaction is indeed correlated with first order
kinetics. The activation energy was calculated to be 40 kcal/gmole. Comparison
of his value with an activation energy of 65 kcal/gmole estimated from Penninger
Slotboom's thermal data (7) indicates that some catalysis of the cracking
reactions is operative.
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